Post-Albizia Control Successional Patterns and Dynamics to Inform Management

R. Flint Hughes Research Ecologist; Institute of Pacific Islands Forestry USDA-Forest Service 808 430 0662 richard.hughes@usda.gov

Funding for project provided by Region 5, State and Private Forestry, USDA Forest Service – MAHALO!

Why bother managing/controlling albizia?

Replaces native forests

Damages infrastructure & property

Obstacle to sustainable agriculture

R.M. Niemiec et al.

Hawaiian Paradise Park Subdivision 13 Kilometers

Fig. 1. A map of 2009 albizia cover (in red) and 2013 tax map key data outlining property boundaries in the Southeastern portion of the island of Hawaii. Our analysis was conducted at two scales delineated with black lines: the Puna District and the Hawaiian Paradise Park (HPP) subdivision within the District. The blue star indicates the first location where albizia was planted by state foresters in the Puna District. Sources: ESRI, DigitalGlobe, GeoEye, Earthstar Geographic, CNES/Airbus DS, USDA, USGS, AeroGrid, IDN, and the GIS User Community. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Landscape and Urban Planning 169 (2018) 70-80

Milestone Herbicide Application: concentrated, low-volume

"Hack and Squirt"

Non Hazard Trees: \$3.50 per tree

What happens to the ecosystem after you kill albizia stands?

Post-control forest succession:

- Leaf litter inputs.
- Nutrient (esp. N) dynamics.
- Understory vegetation response.
- Albizia seedling recruitment.
- Tree and coarse wood decomposition.

 Table 1. Names, locations, and environmental characteristics of study sites.

			Volcano,	
Site	Land	Location	Elev.	Substrate Age
Name	Manager	(UTM: 5Q)	(m)	(YBP)
Keonepoko	DOFAW	0297311 m E, 2163750 m N	84	Kilauea, 200-750
Panaewa	DHHL	0285439 m E, 2179341 m N	28	Mauna Loa, 750-1500
Waikea	Private	0277996 m E, 2175744 m N	225	Mauna Loa, 750-1500
Piihonua	DHHL	0276635 m E, 2181622 m N	274	Mauna Kea, $5-10 \times 10^3$
Honomu	Private	0274641 m E, 2196537 m N	378	Mauna Kea, 65-75 x 10^3

Akaka Falls Time Series before and after Milestone herbicide application treatment

After Treatment

50 m

Foliar nutrients

Used *Clidemia hirta* as a nutrient bioassay across all sites

Herbaceous understory "bounce back" after albizia treatment (BUT it's all non-native weeds!)

Shade: low albizia germination. Sunlight: Crazy high albizia germination!

Potential albizia germinant density (7.64 million individuals ha⁻¹ y⁻¹)

Documented albizia sapling density: (19 individuals per hectare over 3-year monitoring period)

Table 2. Criteria used to classify Falcataria moluccana snags into decay classes

(after Raphael and White 1984).

Decay class	leaves	twigs	branches	limbs	trunk
1	present	present	intact	intact	intact
2	absent	present	intact	intact	intact
3	absent	mostly intact	intact	intact	intact
4	absent	mostly broken	mostly intact	intact	intact
5	absent	absent	mostly broken	mostly intact	intact
6	absent	absent	absent	mostly broken	mostly intact
7	absent	absent	absent	absent	mostly broken
8	absent	absent	absent	absent	absent

Takeaways:

- Albizia even large ones are easily, efficiently, & cheaply killed.
- High nutrient + light availability after albizia control creates great growing conditions for "wall to wall" understory growth.
- Rapid & vigorous understory growth <u>prohibits</u> albizia seed germination and return to albizia stand dominance.
- Albizia trees fall apart in a relatively rapid and orderly fashion decomposition is mostly complete within 4 years.
- Need to explore purposeful plantings (e.g., natives, canoe plants, and agroforest species) before, during, or after albizia control to promote succession to safe, healthy, productive forest landscapes.