## **Biocontrol of Forest Weeds in Hawai`i**

**Tracy Johnson** 



Institute of Pacific Islands Forestry, Pacific Southwest Research Station tracy.johnson@usda.gov **USDA Forest Service** 

Nancy Chaney, Ellyn Bitume, Stuart Mize, Eri Berg, Jessica Kirkpatrick, Sean Prentiss



#### **Hawaiian rainforest**

#### Strawberry guava invasion Photos: Jack Jeffrev

### Land managers in Pacific Islands need new tools for alien plants invading vulnerable forest ecosystems

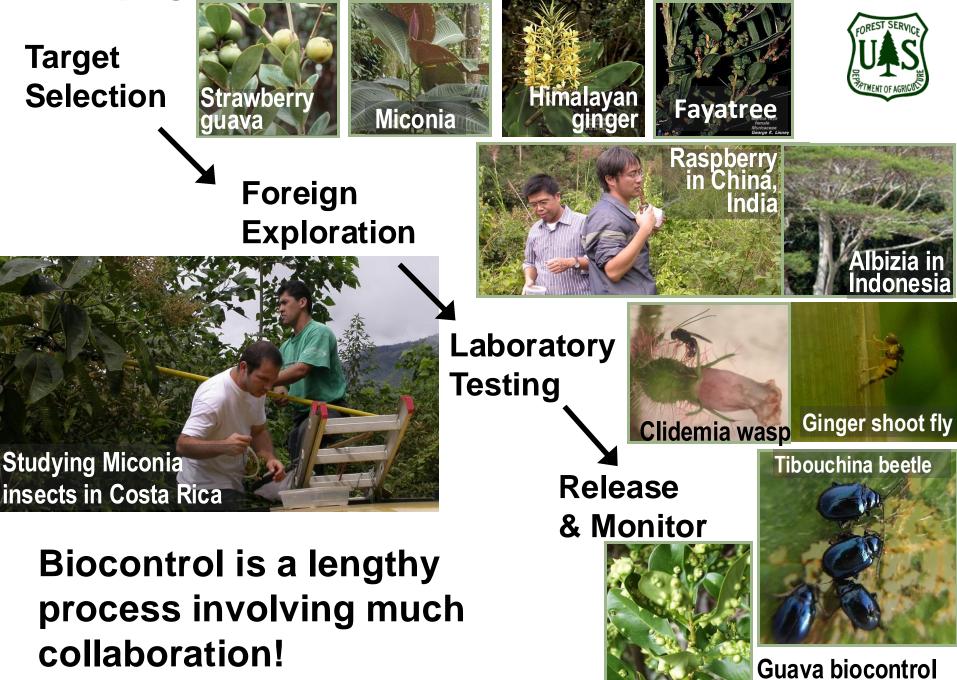


Forest weed biocontrol partners since 1978: US Forest Service, National Park Service, Univ. Hawaii, Hawaii Dept. Agric., Hawaii Dept. Land & Natural Resources, US Geological Survey, US Fish & Wildlife Service, Hawaii Invasive Species Council, Watershed Partnerships, The Nature Conservancy

### Prickly Pear Cactus (Panini) in Hawaii: Biocontrols released 1949-1951

#### **Impacts**

1950


Usually gradual
Plants and biocontrols remain interacting

1958

photos: Hawaii Dept of Agric

Habeck & Bennet Univ Florida

#### Developing biological control for Pacific Island forest weeds





Miconia in Tahiti since 1937

WANTED:

in Hawaii

since 1959

#### MICONIA Dead or Alive

#### What is it?

Miconia is a fast-growing, weedy tree from South America that is now invading Hawai'i.

It has large, dark green leaves with purple undersides.

Leaves can be up to 3 feet long and are oval-shaped.

It looks like a bush when young, but can grow up to 50 feet tall





#### Why is it a threat?

Miconia shades out other plants in native forest, pastures, and farmlands.

- It causes increased erosion by killing groundcover plants.
- II A single plant produces millions of tiny seeds that spread quickly.
- It has already destroyed 70% of the forest growth on Tahiti.
- Miconia plants have now been found on the Big Island, Maui, O'ahu, and Kaua'i.

Miconia containment effort costing > \$1 million annually

#### Maui Invasive Species Committee

#### **Colletotrichum** biocontrol - 1997



#### New prospects for Miconia calvescens biocontrol

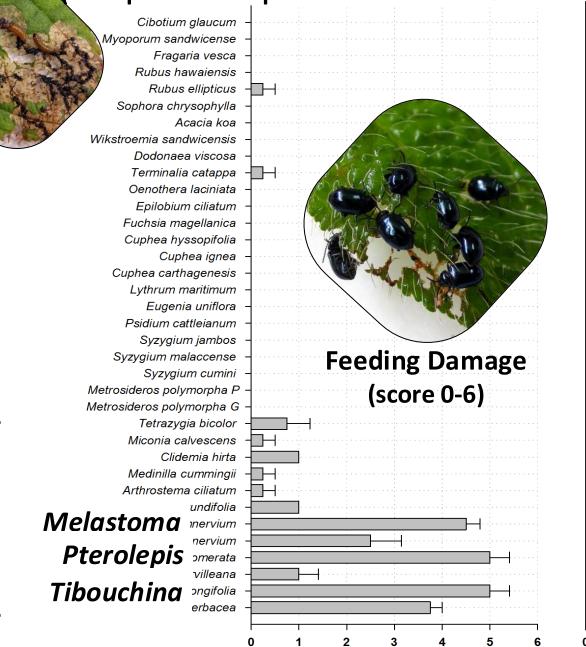


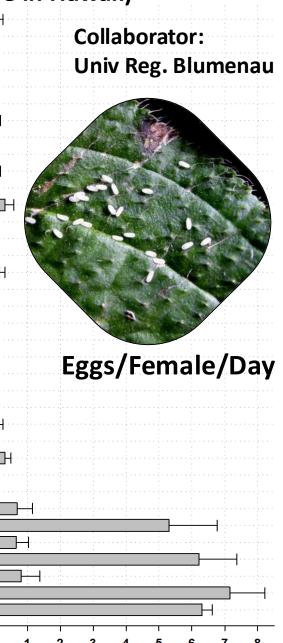


Anthonomus monostigma attacking fruit



*Coccodiella miconiae* leaf fungus



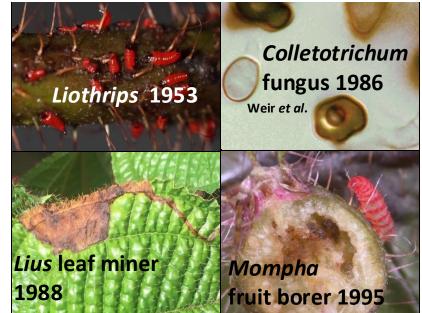


Partners: Univ Costa Rica, Univ Reg. Blumenau, Univ Fed. Vicosa (Brazil)

#### Tibouchina herbacea, Waihee Ridge, Maui

Photo: Forest & Kim Starr

#### Syphraea uberabensis host specific on Tibouchina and close relatives (all expected host plants are melastomes invasive in Hawaii)






Order Myrtales Melastomataceae

#### Biocontrol of Clidemia (Miconia crenata)



#### Need greater impacts from biocontrol



Research at IPIF evaluates efficacy of past biocontrols and potential new agents from tropical American native range

Partners: Univ Costa Rica, Univ Reg. Blumenau, Univ Fed. Vicosa (Brazil) Queensland Dept Ag New Prospects for Biocontrol

#### Allorhogas clidemiae wasp galls fruit



Ditylenchus gallaeformans nematode galls new growth Schinus terebinthifolius: Biocontrol agent tested and released in Florida (Hawaiian plant species also tested in USDA-ARS-IPRL quarantine)

## *Pseudophilothrips ichini* adults on Christmas berry leaf tips

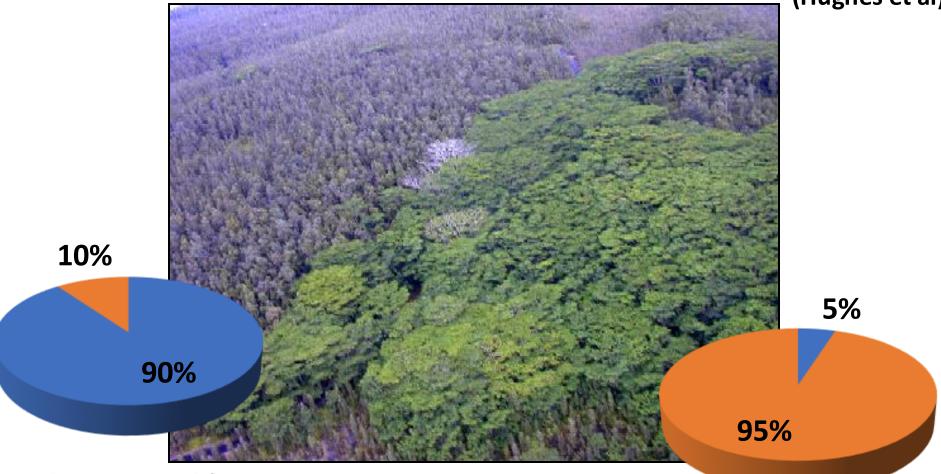
New Hawaii EA addresses: Invasion by *Schinus* Host specificity of thrips Expected effects on *Schinus* and native

species

#### **Biocontrol of Devilweed (Chromolaena odorata)**



*Cecidochares connexa* native to Colombia established on Chromolaena odorata


| Indonesia         | 1995 |
|-------------------|------|
| Palau             | 1999 |
| Phillipines       | 2001 |
| Papua New Guinea  | 2001 |
| Guam              | 2002 |
| Northern Marianas | 2003 |
| Cote d'Ivoire     | 2003 |
| Micronesia        | 2004 |
| India             | 2005 |
| Timor             | 2005 |
| Australia         | 2019 |



Host specificity tests with Hawaiian plants



## Loss of native trees under invading albizia (*Falcataria falcata*) (Hughes et al)



Native Metrosideros Forest



Live Metrosideros

Dead Metrosideros

Falcataria-invaded

#### **Biocontrol of Albizia** (*Falcataria falcata*) Evaluating natural enemies in Indonesia and Papua New Guinea

#### Partners:

IPB University (Bogor) Pattimura University (Ambon) Gadjah Mada Univ (Yogyakarta) Natl Agric Research Inst (PNG) Landcare Research (NZ) Queensland Dept Agriculture

#### **Prioritized for study:** Galling rust fungus



#### Leaf galling mite

Stem boring weevil







### **Biocontrol of Himalayan raspberry (***Rubus ellipticus***)** & mysore raspberry (*Rubus niveus***)**





#### CABI searching in India and China for host-specific enemies that will not attack Hawaiian *Rubus*





#### Exploration in Sikkim, India

#### Himalayan ginger biocontrol

Partners: CABI-UK, Landcare NZ

Merochlorops sp.

**CABI-UK** 



#### Previously released agents have been ineffective

1991 *Caloptilia* sp nr *schinella* (Gracillariidae) from Azores & Madeira

## Need exploration in most biodiverse area of native range: Canary Islands





Ramularia destructiva fungus

Potential partners at Univ. La Laguna Biocontrol of African tulip tree (*Spathodea campanulata*) in Fiji and Cook Islands developed by international partners including SPC, Landcare (NZ), UK and African researchers

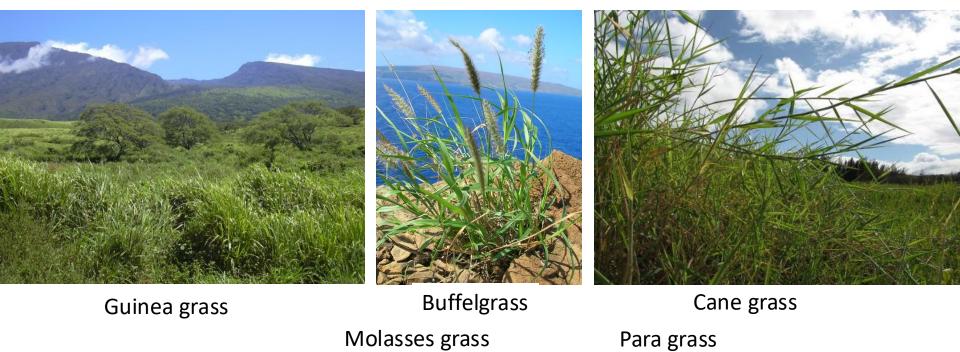


#### Fountain Grass Cenchrus setaceus

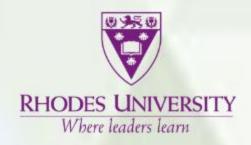


Support exploration in native range: North & East Africa

(Preliminary surveys by Hawai'i Dept Agriculture discovered a fungal pathogen in Tanzania)


#### New collaborator:

**European Biological Control Laboratory** 




Agricultural Research Service

#### **Biocontrol of African Grasses ?**



## New collaborator:







Strawberry guava biocontrol release and establishment 2012

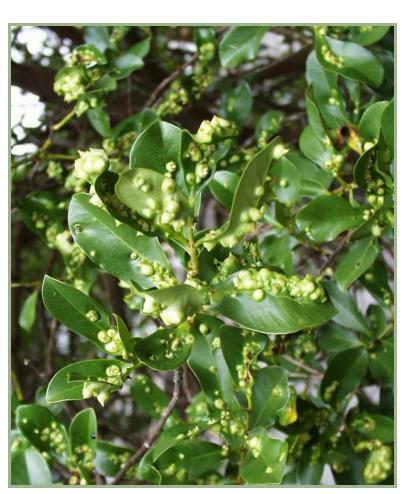




#### **Insect forms leaf galls**

### Life cycle of Tectococcus

female inside gall cannot move


wax

eggs

## Hatched insects (crawlers) feed and start galls

### Applying Strawberry Guava Biocontrol





Establishment of *Tectococcus ovatus* in forest areas 2013-2016





## Production of *Tectococcus* for field application

11/1

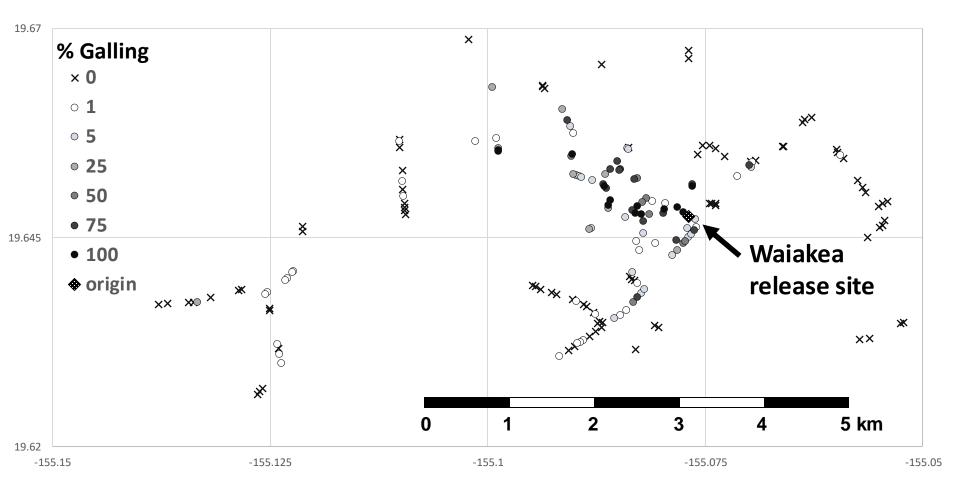
#### **Biological Control of Strawberry Guava:**

Selecting cuttings with mature *Tectococcus ovatus* for application



At correct stage, leaves are fully Galls large but still immature, Galls darkened or rotting, leaves and stem tender and formed and stiff, stem rigid but still leaves darker and aging, pliable green and not woody. stem turning woody. Too young Just right Too old Dead No **Eggs & crawlers** eggs yet female

10x magnified views of female galls in cross-section.


For more info: tracy.johnson@usda.gov

## Methods for distributing strawberry guava biocontrol





#### Natural dispersal of guava biocontrol October 2012 - July 2021



#### 3.5–5.5 km spread in 9 years (400-600 m per year on average)

7/8/2021 2:32 pm

## Scaling up distribution via drone/helicopter

Waiakea

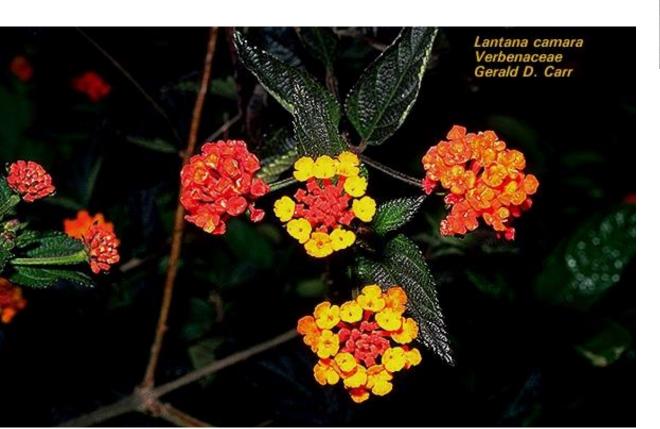
10 km

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Data MBARI Image Landsat / Copernicus Data LDEO-Columbia, NSF, NOAA

Google Earth

19° 37.281' N 155° 28.488' W elev 7651 ft eye alt 95.17 mi 🔘

## Mahalo!


#### To the many partners that share our vision for conservation of island ecosystems More info: www.biocontrolhawaii.org

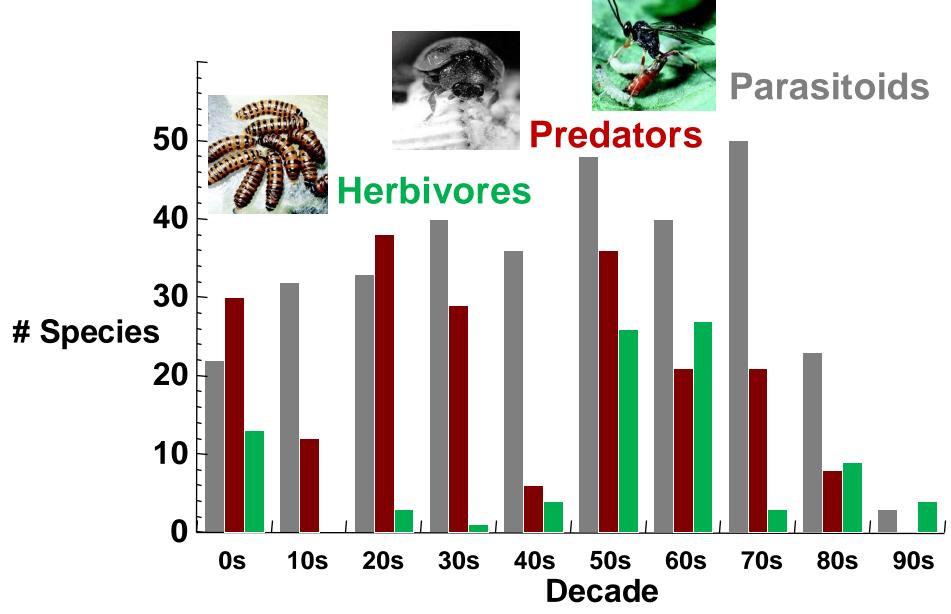




# Hawaii has a long history of biocontrol introductions

First release of weed enemies against lantana in 1902






#### Albert Koebele 1853 - 1924



Vidalia beetle for cottony cushion scale

### **Biocontrol introductions in Hawaii, 1900-1995**



Follett et al., 2000 (Source: Hawaii Dept. of Agriculture)

## Non-target effects of biocontrol in Hawaii

"The importation of parasites to control various moths of economic importance, together with the accidental importation of other parasites, has resulted in the wholesale slaughter and near to complete extermination of countless species. It is now impossible to see the Hawaiian Lepidoptera in the natural proliferation of species and individuals of Perkin's day." Zimmerman 1958

Howarth 1983. Classical biocontrol: Panacea or Pandora's box? *Proc. Hawaii. Entomol. Soc.* 24:239-44

History of non-target issues (Reimer 2002)Frequency of host-specific biocontrol introductionsBefore 1944:54.7%1944-1975:77.4%Since 1975:100% (over 50 introductions)

| Inva                | sive Plants targeted for     | Biocontrols       |
|---------------------|------------------------------|-------------------|
| <u> </u>            | biocontrol in Hawaii         | <u>introduced</u> |
| $ \longrightarrow $ | <b>Lantana</b>               | 1902-1974         |
| Successes           | Purple nutsedge              | 1925              |
|                     | Prickly Pear cactus          | 1949-1951         |
|                     | Gorse                        | 1949-1995         |
|                     | Clidemia                     | 1953-1995         |
|                     | Christmas berry              | 1954              |
|                     | Hamakua pamakani             | 1955-1974         |
|                     | Emex                         | 1957-1962         |
| Non-target          | Melastoma                    | 1958-1964         |
| issues              | Puncturevine                 | 1963              |
|                     | Florida blackberry           | 1963-1966         |
|                     | Klamath weed (St. Johnswort) | 1965-1966         |
|                     | Fayatree                     | 1991              |
|                     | 🗧 Banana poka                | 1991-1996         |
|                     | V Ivy gourd                  | 1996-1998         |
|                     | Miconia                      | 1997              |
|                     | Strawberry guava             | 2012              |
|                     | Fireweed                     | 2013              |

Next: Aerial distribution to remote forests